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FOREWORD 

The University of Houston under a Department 

of Defense, Project THEMIS grant, Office of Naval 

Research Contract N00014-68-A-0151 is engaged in the 

development of a computer information system in sup- 

port of design, simulation and command/control. One 

aspect of the project is the development of general 

purpose computer programs for systems analysis. The 

present report is the analytical phase of a system 

identification (generalized mathematical modeling) 

package based on quasilinearization. A user-oriented 

computer software subsystem is available to aid in 

the application of the process described in this re- 

port and will be described in a subsequent user's 

manual. Additional information on the availability 

of the program and its relation to an integrated 

design and simulation system may be obtained from: 

Cullen College of Engineering, Project THEMIS, 

University of Houston, Houston, Texas 77004 .  
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ABSTRACT 

A procedure f o r  i d e n t i f i c a t i o n  i n  p a r t i a l  d i f f e r e n t i a l  

equat ions i s  descr ibed and i l l u s t r a t e d  by t h e  Laplace 

equat ion and t h e  unsteady hea t  conduction equation. The 

procedure f o r  s o l u t i o n  involves t h e  s u b s t i t u t i o n  of 

d i f f e rence  opera tors  f o r  t h e  p a r t i a l  d e r i v a t i v e s  with 

r e spec t  t o  a l l  but one of t h e  independent va r i ab les .  The 

l i n e a r  boundary value problem i s  solved by superpos i t ion  of  

p a r t i c u l a r  so lu t ions .  For nonl inear  boundary value problems 

which a r i s e  from t h e  o r i g i n a l  form of  t h e  equation o r  from 

t h e  i d e n t i f i c a t i o n  procedure, a Newton-Raphson-Kantorovich 

expansion i n  funct ion  space i s  used t o  reduce t h e  s o l u t i o n  

t o  an i t e r a t i v e  procedure of solving l i n e a r  boundary va lue  

problems. 

For the  problems considered, t h i s  procedure has proven 

t o  be e f f e c t i v e  and r e s u l t s  i n  a reasonable approximation 

t o  t h e  so lu t ion  of t h e  boundary value problem i n  p a r t i a l  

d i f f e r e n t i a l  equations.  For t h e  i d e n t i f i c a t i o n  problem, 

it i s  shown t h a t  t h e  constant  parameters a r e  i d e n t i f i e d  t o  

t h e  same accuracy as t h e  supplementary data used i n  t h e  

i d e n t i f i c a t i o n  procedure. 

Incorporated i n  t h i s  i d e n t i f i c a t i o n  procedure i s  t h e  

p o s s i b i l i t y  i n  t h e  case of overspeci f ied  d a t a  of meeting 

c e r t a i n  boundary condi t ions  exac t ly  and s a t i s f y i n g  t h e  

11 remaining i n  a b e s t - f i t  manner." 
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CHAPTER I 

INTRODUCTION 

Inverse problems i n  systems of d i f f e r e n t i a l  equations 

have received considerable a t t en t ion  i n  the  pas t  few years. 

The appl ica t ions  of the  techniques t o  solve these  problems 

a re  being used i n  many areas of engineering and medical 

research. 

I n  t h i s  d i s se r t a t i on  we s h a l l  consider a type of 

inverse problem i n  which it i s  required t o  determine some 

of the  coe f f i c i en t s  i n  a p a r t i a l  d i f f e r e n t i a l  equation. 

Th$s type of inverse problem i s  a l so  re fe r red  t o  a s  an 

i den t i f i ca t i on  problem. 

In  general, the  present  ea s i l y  solved, numerically o r  

ana ly t ica l ly ,  i den t i f i ca t i on  problems a r e  l imi ted t o  

ordinary d i f f e r e n t i a l  equations. We w i l l  consider the  

appl ica t ion of one of these  numerical techniques t o  p a r t i a l  

d i f f e r e n t i a l  equations and show t h a t  a l a rge  number of these  

can be solved with a reasonable labor.  

This method uses quasi l inear iza t ion.  I n  the  pas t  few 

years many papers have been wri t ten  showing how quasi- 

l i nea r i za t ion  may be used t o  solve boundary value problems 

of nonlinear ordinary d i f f e r e n t i a l  equations. This same 

procedure used t o  solve the  boundary value problem can be 

used f o r  the  i den t i f i ca t i on  of constant coef f ic ien t s  by 
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adding the  d i f f e r e n t i a l  equation f o r  these  constants and 

increasing the  order of t he  system of equations. 

Many of the  problems of nonlinear p a r t i a l  d i f f e r e n t i a l  

equations a r e  formidable i n  ana ly t ic  form and researchers 

have r e l i e d  on approximate techniques t o  solve these  

equations. This d i s se r t a t i on  w i l l  be involved with t he  

numerical in tegra t ion  of a s e t  of ordinary d i f f e r e n t i a l  

equations r e su l t i ng  from an approximate method f o r  solving 

p a r t i a l  d i f f e r e n t i a l  equations. 

One approximate method which has been studied i n  

recent l i t e r a t u r e  i s  known as the  "method of l i n e s "  o r  

"reduction t o  d i f fe ren t ia l -d i f fe rence  equations" (see 

Appendix A)' The ordinary d i f f e r e n t i a l  equations r e su l t i ng  

from t h i s  approximation have been solved ana ly t i ca l ly  i n  a 

few cases [1,2,3] and shown f o r  general c lasses  of l i n e a r  

problems t o  converge t o  t he  continuous solut ion a s  the  

d i sc re t iza t ions  a r e  made a r b i t r a r i l y  s m a l l  [4,5]. This 

approximation w i l l  be used t o  f a c i l i t a t e  the  solut ion of 

boundary value problems and the  inverse problem associated 

with it. 

The method of reducing p a r t i a l  d i f f e r e n t i a l  equations 

t o  ordinary d i f f e r e n t i a l  equations and the  method of 

i den t i f i ca t i on  a re  discussed i n  Chapter 11. A discussion 

l ~ p ~ e n d i x  A i s  a de f in i t i on  of terms used i n  the  
d i s se r t a t i on  



of boundary value problems w i l l  a l s o  be included i n  t h i s  

chapter  s i n c e  t h e  s o l u t i o n  of such problems i s  an i n t e g r a l  

p a r t  of t h e  method of i d e n t i f i c a t i o n ,  

The numerical r e s u l t s  of t h e  examples i l l u s t r a t e d  i n  

Chapter I1 a r e  given i n  Chapter 111, Examples a r e  shown of 

t h e  i d e n t i f i c a t i o n  of s t a b l e  and uns table  equations.  

Solu t ions  of boundary va lue  problems f o r  both l i n e a r  and 

non l inea r  equations a r e  i l l u s t r a t e d  wi th  numerical consid- 
4. 

e r a t i o n s .  A s t r a t e g y  f o r  so lv ing  boundary value problems 

which become unbounded i s  a l s o  discussed i n  Chapter 111. 

This  s t r a t e g y  i s  an imbedding procedure and w i l l  be 

r e f e r r e d  t o  as t h e  method of similar boundary value prob- 

lems. This  w i l l  be i l l u s t r a t e d  f o r  a mildly nonl inear  

equat ion,  

Chapter IV conta ins  t h e  summary, conclusions,  and 

recommendations f o r  f u r t h e r  work. 

Statement of Problem 

The problem i s  t o  descr ibe  and demonstrate t h e  use  of 

a method of solving t h e  inver se  problem which i d e n t i f i e s  

parameters i n  p a r t i a l  d i f f e r e n t i a l  equations.  This method 

i s  based on q u a s i l i n e a r i z a t i o n  [ 6 ]  which has been success- 

f u l l y  used f o r  i d e n t i f i c a t i o n  i n  both l i n e a r  and nonl inear  

ord inary  d i f f e r e n t i a l  equat ions.  This  d i s s e r t a t i o n  w i l l  

show an i d e n t i f i c a t i o n  procedure which can be appl ied  t o  a 



p a r t i a l  d i f f e r e n t i a l  equation which has been reduced t o  a 

s e t  of ordinary d i f f e r e n t i a l  difference equations. 

Both s t ab l e  and unstable equations w i l l  be inves t i -  

gated t o  f ind  what l imi ta t ions  a r e  placed on such an 

i den t i f i ca t i on  procedure when there  i s  some doubt as  t o  

t h e i r  s t a b i l i t y .  Also, the  problem of dimensionality w i l l  

be discussed with re la t ionsh ip  t o  accuracy and computer 

time. I n  addit ion,  it i s  necessary t o  discuss t he  numerical 

solut ion of the  boundary value problem which r e s u l t s  from 

the  method of reduction t o  ordinary d i f f e r e n t i a l  equations. 

Previous Work 

The r e l a t i v e  importance of techniques f o r  solving 

inverse problems has been recognized f o r  severa l  years. 

Both s t a t i s t i c a l  and determinist ic  methods of i d e n t i f i -  

ca t ion have been developed f o r  ordinary d i f f e r e n t i a l  

equations. I n  the  pas t  few years some e f f o r t  has been 

made t o  extend these  methods of i den t i f i ca t i on  t o  p a r t i a l  

d i f f e r e n t i a l  equations. 

Perdreauvil le  [ 7 ]  discusses the  extension.of t he  

method of Shinbrot [8]. This method does not obtain a 

solut ion of the  p a r t i a l  d i f f e r e n t i a l  equation but  r e s u l t s  

i n  the  evaluation of i n t eg ra l s  over the  domain which a r e  

evaluated by use of the  physical data.  This method i s  

applicable only t o  equations whose elements can be 



5 

i n t e g r a t e d  by p a r t s .  However, he has i l l u s t r a t e d  t h a t  some 

a l t e r a t i o n s  can be made t o  c e r t a i n  equat ions which a r e  n o t  

d i r e c t l y  i n t e g r a b l e  by p a r t s .  

Jones and Douglas [g] have shown t h e  ex i s t ence  and 

uniqueness of the  determinat ion of a c o e f f i c i e n t  i n  t h e  one 

dimensional unsteady h e a t  conduction problem. Cannon [ l o ]  

cons iders  t h e  exis tence  and uniqueness of another type  of  

inve r se  problem which i s  t h e  determination of an unknown 

hea t  source from overspeci f ied  data .  

One of t h e  de te rmin i s t i c  methods which has been 

developed i s  t h e  use of q u a s i l i n e a r i z a t i o n  t o  so lve  a 

nonl inear  system of o rd ina ry  boundary value problems. The 

method i s  e a s i l y  adapted t o  an i d e n t i f i c a t i o n  procedure by 

coupling t h e  d i f f e r e n t i a l  equations f o r  cons tants  t o  t h e  

system and solving t h e  boundary value problem. The develop- 

ment of these  procedures w a s  i n i t i a t e d  by Bellman and Kalaba 

161. Holloway [ l l ]  used t h e s e  ideas  t o  i n v e s t i g a t e  t h e  

f e a s i b i l i t y  of i d e n t i f i c a t i o n  of t h e  e a r t h ' s  geopo ten t i a l  

from d a t a  of a synchronous s a t e l l i t e .  Paine [12] reviews 

t h e  use of q u a s i l i n e a r i z a t i o n  i n  t h e  computation of optimal 

con t ro l .  The so lu t ion  of nonl inear  ord inary  d i f f e r e n t i a l  

equat ions with non-linear boundary values was considered by 

Lee 1131. 

To d i r e c t l y  use t h e  ideas  a l ready developed f o r  

ord inary  d i f f e r e n t i a l  equat ions,  i t  i s  necessary t o  reduce 
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the  p a r t i a l  d i f f e r e n t i a l  equation t o  a system of ordinary 

equations. Detchmendy [ lk]  used the  transformation of t he  

independent var iables  a s  one method of reduction and 

cha rac t e r i s t i c s  i n  hyperbolic equations as a second method 

of reduction. The method of transformation requires  t he  

transformation of boundary conditions and the  inverse 

transform t o  obtain t he  solut ion i n  i t s  o r ig ina l  coordi- 

nates.  The method of cha rac t e r i s t i c s  i s  applicable t o  only 

a spec ia l  type of p a r t i a l  d i f f e r e n t i a l  equation. 

The method of reduction employed i n  t h i s  d i s se r t a t i on  

i s  ca l led  t h e  "method of l i ne s"  [1,4] o r  "analog solut ion" 

[15,16]. It i s  an approximate method which has been 

invest igated primari ly because it reduces the  p a r t i a l  

d i f f e r e n t i a l  equation t o  a system of ordinary equations. 

The convergence of the  approximate solut ion t o  the  continu- 

ous solut ion has been considered by severa l  authors. 

Lebedev [4] i l l u s t r a t e s  t h e  appl ica t ion f o r  a number of 

problems and es tab l i shes  t he  convergence of the  solut ion 

f o r  some of these  equations. Establishment of convergence 

and estimates of t h e  e r ro r  of t he  approximate solut ion have 

been considered i n  a number of papers [5,15,17,18] f o r  

pa r t i cu l a r  l i n e a r  heat conduction equations. 

This approximate method i s  a l so  re fe r red  t o  a s  t he  

analog solut ion because of i t s  app l i cab i l i t y  t o  analog 

computers. The approximate solut ion of a l imi ted number of 



l i n e a r  parabolic and hyperbolic equations a re  considered i n  

references [16,19-23]. Fisher  [16] discusses t he  use of 

higher order,approximations of der ivat ives  f o r  obtaining a 

more accurate solut ion,  Greenwood [21] makes a comparison 

of a higher order scheme with lower order schemes f o r  t h e  

beam vibra t ion problem and shows t h a t  t he  increase of 

accuracy i s  s ign i f ican t  . 
This method i s  re fe r red  t o  i n  Russian l i t e r a t u r e  as 

t h e  "method of l ines ."  Lebedev [4] s t a t e s  t h a t  "from a 

methodological point  of view it should be more co r r ec t ly  

ca l l ed  t he  d i f fe ren t ia l -d i f fe rence  method or  the  d i f f e r -  

ent ia l -d i f ference  Fourier method," I n  a l l  t he  examples 

which Lebedev considered, separat ion of var iables  was 

possible which l ed  t o  Fourier s e r i e s  and thus t h e  connec- 

t i o n  with the  Fourier method i s  obvious. Two of the  

recent ly  t rans la ted  papers [1,2] have shown the  e x p l i c i t  

so lut ion of these  equations by reducing them t o  a canonical 

form and solving the  r e su l t i ng  equations i n  the  transformed 

space. 

One of the  more complete ana ly t ica l  references on the  

method of l i n e s  i s  a t e x t  by Berezin and Zhidkov [3] which 

a l so  includes a number of references t o  e a r l i e r  Russian 

l i t e r a t u r e .  

Boyd [24] has used t h i s  approximate method f o r  a 

solut ion of the  Hemholtz equation i n  a spher ica l  coordinate 



system. 

Sarmin and Chudov 1251 have presented the  analys is  of 

s t a b i l i t y  of t h e  in tegra t ion of t he  r e su l t i ng  ordinary 

d i f f e r e n t i a l  equations by a four th  order Runge-Kutta method 

and various orders  of Adams methods. The models used i n  

t h i s  analysis  were 

and t ab l e s  of l i m i t s  were given f o r  s t a b i l i t y  with respect  

t o  Cauchy data.  



CHAPTER I1 

THEORY OF SOLUTION 

Reduction t o  a Set  of Ordinary Di f fe ren t ia l  Equations 

The reduction of a p a r t i a l  d i f f e r e n t i a l  equation t o  

a s e t  of ordinary d i f f e r e n t i a l  equations by the  use of 

difference operators leads t o  an approximate method of 

solving p a r t i a l  d i f f e r e n t i a l  equations. Since the  solution 

i s  found along continuous l i nes ,  t h i s  method i s  re fe r red  t o  

i n  Russian l i t e r a t u r e  as  the  "method of l ines . "  I n  other 

papers it i s  often referred t o  as  the  analog solution since 

t h i s  form of approximation i s  well sui ted t o  the  use of 

analog computers. 

The approximation i s  a t ta ined  by subs t i tu t ing  d i f f e r -  

ence operators f o r  the p a r t i a l  derivatives with respect t o  

a l l  but one of the  independent variables.  Thus, t h e  

equation depends only on one independent var iable  and i s  

reduced t o  a s e t  of ordinary di f ferent ia l -di f ference 

equations. 

For i l l u s t r a t i o n  purposes, consider the  following 

second-order p a r t i a l  d i f f e r e n t i a l  equation 

By assuming tha t  u(x,y) i s  su f f i c i en t ly  smooth, we may 
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replace the  der ivat ives  with respect  t o  the  y d i rec t ion  by 

the  f i n i t e  d i f ference  approximations 

Thus Eq. (2.1) reduces t o  a system of ordinary d i f f e r e n t i a l  

equations 

where 

The choice of EI and E ~ ,  which a r e  f i n i t e  difference 

operators,  i s  important t o  the  nature  of the  solut ion.  

Throughout t h i s  d i s se r t a t i on  the  order of an operator w i l l  

have reference t o  t he  order with respect  t o  i t s  e r ror .  

The f i r s t  and most basic approach i s  t o  use second 

order cen t r a l  difference approximations f o r  the  deriva- 

t ives .  The convergence proofs given by Douglas [18], 

Landau [15], and Friedman [IT] were based on such a second 

order approximation i n  the  unsteady heat conduction 

equation. Associated with such an approximation i s  an 
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er ro r  which w i l l  be termed the  truncation e r ror .  This 

truncation e r ro r  may be made a r b i t r a r i l y  small, but the  

required number of equations t o  be solved can become 

cumbersome, 

Another a l t e rna t ive  suggested by Fisher [16] i s  the  

use of higher order difference operators f o r  the  deriva- 

t i ves .  This a l te rna t ive  does not  complicate the  method of 

solution,  but instead leads t o  greater  accuracy than i s  

cha rac t e r i s t i c  of the  lower order approximation, Fisher 

shows t h a t  i f  the  same higher order operator i s  used f o r  

a11 l ines ,  addi t ional  boundary values a re  required and 

I I spurious roots" a re  introduced i n t o  the solution.  For 

example, consider E~ t o  be a four th  order cen t r a l  d i f f e r -  

ence operator which requires values f o r  Ui+B, Ui+l, Ui, 

U i-l and Ui-20 For l i n e s  i = 1 and i = n-1 values would be 

required f o r  Ue1 and Un+* where Uo and Un+l a r e  known 

boundary values, Fisher suggests t h a t  where the  boundary 

values Uo(x) and Un+l(x) a re  known expl ic i ty  t h a t  U-l and 

Un-1 be calculated by imposing the  d i f f e r e n t i a l  equation 

i t s e l f  together with the second order approximations, 



For Eq. (2.1) t h e  imposed condit ion i s  

where d2uo/dx2 i s  known and Eqs. (2.3) have been subs t i -  

tu ted  i n t o  Eq. (2.2).  Uml i s  the  only unknown i n  Eq. (2.4) 

and i t s  value i s  used t o  complete t h e  four th  order approxi- 

mation. I n  l i k e  manner, Un+l may be found. 

11 The e x t r a  boundary conditions and spurious roots"  

may be avoided by using a di f ference  approximation of the  

same higher order which includes only i n t e r i o r  l i n e s  and 

the  boundary. This requires  spec ia l  formulas f o r  outer  

l i ne s ,  but it does avoid the  necess i ty  of introducing e x t r a  

boundary conditions. 

A s  an i l l u s t r a t i o n ,  consider a simulation of the  

Laplace equation 

Writing ~ q .  (2.6) a t  i = 2 requires  us t o  solve f o r  U U , 
1' 0 

and U . Likewise, a t  i = n, 
'n, 'n+l, 

and U a r e  needed. 
-1 n+2 

This introduces the  need f o r  ex t r a  boundary conditions 

which may be found by imposing the  d i f f e r e n t i a l  equation. 
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Alternat ively,  these ex t ra  boundary conditions may be 

avoided by using the  following four th  order approximations 

f o r  t he  equations a t  i = 1 and i = n 

E ~ ( u ~ )  i s  known f o r  a l l  l i n e s  and i s  dependent only on the  

given boundary conditions and l i n e s  i n t e r i o r  t o  t he  domain. 

Presented i n  Chapter I11 a re  r e s u l t s  which show t h a t  

t h i s  higher order approximation gives b e t t e r  accuracy f o r  

a reasonable number of l i n e s  without add i t iona l  expense i n  

ca lcula t ion.  A t  t h i s  s tage,  t he  term reasonable number of 

l i n e s  i s  nebulus. However, it w i l l  become more c l ea r  as  

t he  method i s  described and t h e  numerical r e s u l t s  a r e  

presented. 

Lebedev [4] has considered another l i n e  method of 

approximation which i s  of four th  order accuracy. The 

second order cen t r a l  difference approximation i s  expanded 

by a Taylor s e r i e s  about u(x,yi) 



and likewise 

4 4 Thus, by el iminating a u/ a y  

I f  the  o r ig ina l  p a r t i a l  d i f f e r e n t i a l  equation i s  solved 
4 

f o r  a 2u/ ay2 and subs t i tu ted  i n t o  Eq. (2.10), the  

r e su l t i ng  equation w i l l  be an approximation of four th  

order. 

A s  an i l l u s t r a t i o n ,  consider the  Laplace equation 

Solving f o r  u  i n  Eq. (2.11) and subs t i tu t ing  i n t o  Eq. 
YY 

(2,lO) 



Formulating Eq. (2.12) as a matrix equation, 

where 



To be a b l e  t o  use t h i s  higher  order  approximation within 

t h e  context  of t h e  methods discussed i n  t h i s  paper, it i s  

necessary t o  reduce Eq. (2.13) t o  a system of f i r s t  order  

equat ions.  This may be accomplished by f i r s t  mult iplying 

Eq. (2.13) by A-I 

den - - A - 1 F g / h 2 -  -1- 

d xi! - - A  B 

then reducing Eq. (2.14) t o  i t s  s t a t e  v a r i a b l e  form 

The Method of I d e n t i f i c a t i o n  

The method used here f o r  i d e n t i f i c a t i o n  of parameters 

i n  p a r t i a l  d i f f e r e n t i a l  equations i s  hased on t h e  Newton- 

Raphson-Kantorovich expansion i n  funct ion  space. ( see  

Appendix C )  Bellman and Kalaba [6] r e f e r  t o  t h i s  as 

q u a s i l i n e a r i z a t i o n .  This method reduces t h e  so lu t ion  of 

boundary value problems f o r  nonl inear  equations t o  an 

i t e r a t i v e  process of solving boundary value problems f o r  

l i n e a r i z e d  equations.  This method has been i l l u s t r a t e d  i n  

seve ra l  r ecen t  publ ica t ions  [6,1.1,12,13] . 
The p a r t i c u l a r  d e t a i l s  used i n  t h i s  study a r e  c l o s e l y  

a s soc ia ted  with those used by Holloway [ l l ]  i n  t h e  i d e n t i -  

f i c a t i o n  of cons tants  of an ordinary d i f f e r e n t i a l  equation. 



Let us assume the  general  form of t he  p a r t i a l  d i f f e r -  

e n t i a l  equation given by 

where i s  an s dimensional vector and i s  an r dimen- 
- 

s iona l  space representing r independent var iables .  C i s  a 

vector  representing p constants  appearing i n  t he  equation, 

The p a r t i a l  der ivat ives  a r e  noted as follows 

To solve t h i s  s e t  of n equations, we reduce Eq. (2.14) t o  

a system of ordinary d i f f e r e n t i a l  equations. A s  indicated 

before, t h i s  i s  done by subs t i tu t ing  f i n i t e  difference 

operators f o r  the  p a r t i a l  der ivat ive  operators with respect  

t o  a l l  independent var iables  except one. The remaining 

var iable  x w i l l  be re fe r red  t o  as  
1 

the  c on t inuous var iab le  

and denoted as  x. A s  described previously, the  choice of 

f i n i t e  difference approximations i s  somewhat a rb i t r a ry ,  but 

c e n t r a l  difference approximations a r e  general ly  used i f  it 



i s  possible t o  do so without requir ing ex t r a  boundary 

conditions t o  be imposed. 

The equations a r e  reduced t o  the  system of f i r s t  order 

d i f f e r e n t i a l  equations 

- 
where i s  a vector function of T, E, x and be Vl i s  a 

vector of the  s t a t e  var iables ,  'i; i s  the  vector of incre-  

ments of the  independent var iables  which a r e  d iscre t ized,  

and ?? i s  the  vector of unknown constants.  

The iden t i f i ca t i on  method can be described as  follows: 

(1 )  Adjoin t o  Eq. (2.15) t he  s e t  of equations 

which i s  t he  s e t  of d i f f e r e n t i a l  equations governing the  

unknown constants.  Combine 5 and 5 i n t o  one vector 



(2 )  Linearize Eq. (2.15) by the  Newton-Raphson- 

Kantorovich expansion 
K 

d - k + 2  
xv 

(2.16) 

where k ind ica tes  the  kth i t e r a t i o n  a. 

To solve Eq. (2.16) a solut ion k = 0 i s  required. 

Several methods have been proposed f o r  obtaining t h i s  

solut ion.  One method i s  t o  estimate t he  values of the  s t a t e  

var iables  and s t o r e  these  as  vO(x) .  A second method 

involves the  in tegra t ion  of t he  nonlinear equations t o  

obtain p ( x ) .  Thus, by assuming a vector  of i n i t a l  condi- 

t i o n s  p ( o )  and in tegra t ing  the  nonlinear Eqs. (2.15), 

yO(x) i s  formed. ?(x) can a l so  be in tegra ted using yO(x)  

i n  ~ q .  (2.16). 

The process of solving the  l i n e a r  boundary value 

problem is  accomplished by the  superposition of partycular  

solut ions .  This s impl i f i es  the  computer programming but  

increases t he  order of the  matrix t o  be inverted i n  deter-  

mining the  proper i n i t i a l  conditions by one. I n  addit ion,  

t he  use of pa r t i cu l a r  solut ions  has t h e  fea ture  of giving 

an e x p l i c i t  indicat ion of the  degree of convergence of t he  

i t e r a t i v e  process. (see Appendix B) 

This method involves the  perturbat ion of the  i n i t i a l  

conditions t o  insure  t h a t  the  r e su l t i ng  solut ions w i l l  be 

independent and well behaved. I n  addit ion,  t h i s  
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perturbat ion process gives an e x p l i c i t  indicat ion of the  

s e n s i t i v i t y  of the  solut ion t o  the  i n i t i a l  conditions of 

the  problem. This s e n s i t i v i t y  i s  an important f a c t o r  i n  

the  system iden t i f i ca t i on  process, espec ia l ly  i n  p a r t i a l  

d i f f e r e n t i a l  equations, 

A t  t h i s  point ,  some indicat ion should be given a s  t o  

the  order of t he  system of ordinary equations which w i l l  be 

solved, If Eq. (2.14) has r independent variables,  (r-1) 

of these  a r e  divided i n t o  n  increments, then there  w i l l  be 

( r - l ) (n -1)  dependent var iables  f o r  the  approximate system 

of equations. When t h e  approximate system i s  converted t o  

a  s e t  of f i r s t  order equations, t he  r e su l t i ng  system i s  

( r - l ) (n - l ) (m)  where m i s  t h e  highest order der ivat ive  with 

respect  t o  the  continuous independent var iable .  I n  

addit ion,  t h i s  s e t  must be in tegra ted q+l times, where q 

i s  the  number of t h e  unknown i n i t i a l  conditions and unknown 

constants.  Thus ( r - l ) (n - l ) (m)(q+l )  equations must be 

in tegra ted f o r  each i t e r a t i o n ,  The order of the  matrix t o  

be inverted i n  solving f o r  t he  new i n i t i a l  conditions i s  

(q+l)  

It i s  not d i f f i c u l t  t o  see t h a t  problems of dimension- 

a l i t y  might be introduced i f  the  increments of the  

d i sc re t ized  independent var iables  become too small, the  

number of independent var iables  become too la rge  or  the  

order of the  der ivat ive  becomes too high. Although there  
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might be some d i f f i c u l t y  due t o  dimensionality, the 

conceptuality of such a procedure i s  not destroyed and no 

l imita t ions  have been placed on the  type of equations which 

can be handled by t h i s  method, except tha t  the resul t ing 

ordinary d i f f e ren t i a l  equations should be quasilinear. 

To i l l u s t r a t e  the method, l e t  us consider the  Laplace 

equation within the  domain of the  uni t  square. 

with c l a s s i ca l  boundary conditions, 

u ( o , y )  = s in  sry 

To ident i fy  the parameter c,  addit ional  boundary values a re  

required. Eq. (2.17) i s  expanded i n t o  i t s  ' 'lines formf' 

which i s  

where n i s  the  number of l ines .  Appendix D gives the 

analyt ical  solution of a three l i n e  approximation f o r  c = 1. 

Let 



Thus, the  s t a t e  var iab le  vector i s  

1 

and the  matrix equation i s  

The nonlinear equations a r e  

The l inear ized  equations a r e  formed by use of the  l inear -  

i za t i on  process already described. It i s  helpful  t o  note 
2 t h a t  i f  E i s  a l i n e a r  operator on the  s t a t e  var iables ,  it 

may be t r ea t ed  a s  a separate var iable  i n  t he  l i nea r i za t ion  

procedure. Eq. (2.lga) and Eq. (2.lgc) a r e  already l i nea r  

so t ha t  only Eq. (2, lgb) needs t o  be expanded i n t o  a l i nea r  

equation. 

The resu l t ing  l inear ized  equations a r e  



Let us assume a three  l i n e  approximation t o  the  

problem as  shown i n  Fig. 2.1 and choose a second order 

cen t ra l  difference operator f o r  E ~ .  

E'(v~) = ( v ~ + ~  - 2 V i  + V I - ~  ) / hZ 
The matrix equation i s  

, where 

d v  - - - 
dx 

v and v denote the boundary conditions a t  y = 0 and 1 2 

y = 1, respectively. 

I 
AIL I At2 -- t-- 
Aei  I A r e  

- - 
V + B 



form 

Figure 2.1 Three Line Approximation 

where 

The l inear ized equation may a l so  be wri t ten i n  matrix 

I 9 

/ - 1  Ail A i z  vk+' - EK 



For an i n i t i a l  approximation, k = 0 ,  an i n i t i a l  vec tor  

?o(o) i s  assumed which con ta ins  t h e  known i n i t i a l  condi- 

t i o n s  and an es t imate  the missing i n i t i a l  condi t ions  

from a p r i o r i  knowledge. For t h e  problem under cons idera t ion  

we choose 

where d. 1 6 i 6 4, a r e  t h e  es t imates  of t h e  missing 
i' 

i n i t i a l  condi t ions.  

To f i n d  t h e  s o l u t i o n  of t h e  l i n e a r  boundary va lue  

problem shown i n  Eqs. (2.201, i t  i s  necessary t o  know 

TO(x),  which i s  obtained by so lv ing  t h e  nonl inear  Eqs. 

(2.19) wi th  i n i t i a l  condi t ions  Eq. (2.21). Eq. (2 .20) i s  

then  i n t e g r a t e d  using t h e  nonl inear  so lu t ion  and t h e  

i n i t i a l  vec tor  Eq. (2.21). Since t h e r e  a r e  four  unknown 

i n i t i a l  values,  it i s  necessary t o  generate  four  independ- 

e n t  so lu t ions .  We do t h i s  by per turb ing  t h e  unknown 

i n i t i a l  condi t ions by some constant  m u l t i p l i e r .  We denote 

t h i s  constant  as /3 which may be d i f f e r e n t  f o r  each unknown 

i n i t i a l  condi t ion di. A f i f t h  so lu t ion  of t h e  l i n e a r i z e d  

equation i s  generated us ing  t h e  unperturbed i n i t i a l  



conditions, Eq. (2.21). 

Let $ (x) be the  solut ion matrix of t h e  l inear ized  

Eqs. (2.20) which obeys the  equation 

where 

and 

Let Qi represent  the  operator which indicates  the  

value of x and the  s t a t e  var iable  f o r  which the  boundary 

condition, bi, i s  known. With t h i s  operator notat ion,  t he  
- 

following l i n e a r  equations must be solved f o r  21 . 

The vector Qi $ (xi) denotes t he  row of t he  matrix & (xi) 

which corresponds t o  the  s t a t e  var iab le  f o r  which the  i t h  

boundary condition i s  given. 

Coupled with Eq. (2.23) i s  the  auxi lary  condition 

Eq. (2.24) required f o r  the  superposition of pa r t i cu l a r  

solut ions  



Eqs. (2.23) and (2.24) may be combined i n  t h e  following 

no t a t i on  

where 

A s  a second example, consider  t he  unsteady heat  

conduction equation 

with boundary condit ions 

u t x , o )  = u t x , ~ l  = 0 
u t o , y l  = s \ n  sy 

The Cauchy problem i s  c o r r e c t l y  posed f o r  t h i s  equation, 

and it i s  expected t h a t  reasonable accuracy could be 

obtained i n  t h e  i d e n t i f i c a t i o n  of t h e  parameter "c." This  

equation has been wel l  s tudied ,  and i t s  so lu t ions  a r e  wel l  

known. A s  was ind ica ted  i n  Chapter I, t h e  convergence of 
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the  differential-diff-ence equations i s  well established,  

and the  s t a b i l i t y  of the  numerical in tegra t ion  of the  

r e su l t i ng  equations w a s  s tudied by Sarmin and Chudov [25]. 

For t h e i r  s tudies ,  x was ca r r ied  as  t he  continuous var iable .  

The approximation of Eq. (2.26) r e s u l t s  i n  the  s e t  of 

ordinary d i f f e r e n t i a l  equations 

with boundary conditions 
J f 

U ; t x ) =  s i n  ( i ~ / n + l l  
The change of nota t ion which has been used e a r l i e r  i n  t h i s  

chapter i s  helpful  i n  conceiving Eq. (2.28) as a s t a t e  

var iable  type equation. Let V = c so t h a t  the  complete 
n+l 

s e t  of nonlinear equations t o  be solved i s  

" The l inear ized  s e t  of equations a r e  



29 

The procedure fo r  solution of these equations i s  the same 

a s  has been described f o r  the  Laplace equation, 

I f  the number of known boundary conditions 1 i s  

'greater than the number of unknown i n i t i a l  conditions, then 

S w i l l  not be a square matrix and Eq. (2.25) w i l l  not have 

a unique solution. 

Among the most used methods of solving such problems 

of overdetermined systems i s  the method of l e a s t  squares. 

A se t  of (q+l) equations may be formed by minimizing the 

square of the deviations from the given boundary conditions, 

where q i s  the number of unknown i n i t i a l  conditions, 

Carrying out t h i s  minimization with respect t o  the 

constants 3 gives Eq. (2.29) 

However, consider tha t  boundary values are  given 

such tha t  1 2 q where q i s  the number of unknown i n i t i a l  

conditions and 1 of these a re  known exactly. The 



remaining 1 are  approximate boundary values t o  be f i t  i n  
2 

a l e a s t  square sense. Let us p a r t i t i o n  Eq. (2.25) 

so t h a t  we obtain two vector  equations 

- 
Since $ 1 i s  known from Eq. (2.30a), subs t i t u t e  it i n t o  

Eq. (2.30b) 
- 
1, = s;: \ El1- sit %21 

Minimizing t h e  square of t he  deviat ions with respect  t o  the  

remaining constants 

giving 
- 7 -i - 

( bz- Srt  511 bl - ( s P Z - S Z ~ S ; :  SL+) Xz) 

( S 2 L  -511 5;:. 512) =o 
Let t ing 
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By subst i tut ing Eq. (2.30b) in to  Eq. (2.31) 

- 
bl i s  the vector of 1 exact boundary conditions such 

t h a t  0 LP1 1 q. b2 i s  the vector of l 2  inexact boundary - 
conditions such t h a t  1 2+ > q. g1 contains the  f i r s t  

R1 constants and 1 contains the remaining (q- 8 1) 

constants. 

The auxi l iary equation, Eq. (2.24) fo r  the super- 

posit ion of -particular solutions i s  included i n  Eq. (2.30a). 

If we consider the auxil iary equation t o  be the only 
- T i s  the uni t  vector, S12 i s  the exact equation, S12 

unperturbed solution vector, and SO' i s  a scalar  and equal 
11 

t o  1. Thus 

or  the columns of S a re  the difference between the 

perturbed solution vectors and the unperturbed vector. The 

boundary condition of Eq. (2.32) i s  a l te red  i n  a similar  

Eq. (2.32) reduces t o  
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An approach which has proven t o  be successful i n  the  

problems- we have considered i s  an a l t e r a t i o n  of t he  l e a s t  

square approach. This pseudo-least square method subs t i -  

t u t e s  S22 i n  Eq. (2.33) f o r  s'. Thus, i n  addit ion t o  

Eq. (2,30a),  t he  equation 

- 
i s  used t o  solve f o r  8 . 
Boundary Value Problems 

I n  t he  example problems considered thus f a r ,  i t  has 

been assumed t h a t  the  boundary conditions U and U a r e  
o n+l  

known, This requirement i s  convenient but not necessary. 

Consider t he  following problem 

where a i s  the  Laplacian operator and i s  the  f i r s t  3 
zero of J, with the  boundary conditions 

u ( Q , . ~ )  =o 
u ( @ , o )  = f i n i t e  (2.36) 
u ( @ , r )  = IA( 0 + 2 - ~ , r )  

The solut ion t o  t h i s  problem i n  cy l ind r i ca l  coordinates i s  

Let us consider t h i s  problem given on the  domain of t he  

un i t  square. The governing equation i s  



where 2 -5 r = ( ( . 5  - x > ~  +( .5 -y1  1 
The approximate equations a r e  

with boundary conditions appearing a t  points  i n t e r i o r  t o  

the  boundary of the  domain. Let n = 7 such t h a t  t he  

square i s  divided i n t o  e igh t  equal s labs  as i l l u s t r a t e d  i n  

Fig. 2.2. 

Figure 2.2 Line Approximation f o r  
Circular  Shaped Boundary 

For t h i s  example, the  functions U8(x) and uo(x) a r e  not 

known. However, s ince U8(x4) and Uo(x4) a r e  known, we 

might consider making U8(x) = U8(x4) and Uo(x) = Uo(x4). 

However, t h i s  w i l l  l ead t o  a poor approximation of E ~ ( U  ). 
i 



For an a l t e rna t e  approach, we must r e a l i z e  t h a t  two 

addi t ional  boundary conditions can be found f o r  Uo(x) and 

Although we w i l l  r e f e r  t o  Eqs. (2.37) as boundary conditions 

f o r  t he  approximate equation, they a r e  not boundary condi- 

t i ons  f o r  t he  continuous problem. To show how these  

conditions a r i s e ,  assume t h a t  U (x) i s  a  secant t o  the  
0 

curve C a s  shown i n  Fig. 2.3. 

Figure 2.3 Tangent Boundary Condition 

A s  s i s  made a r b i t r a r i l y  small 

i f  the Imown function along the  curve C i s  continuous. 

A forward and backward f i n i t e  difference approximation 

of second o r  four th  order i s  used f o r  E ~ ( u ~ )  m d  E ~ ( u ~ ) .  

This approach has proven t o  be successful f o r  the  p rob1 .e~  

being considered and the  r e s u l t s  w i l l  be discussed i n  

Chapter 111. 



CHAPTER 111 

RESULTS AND CALCULATIONS 

The r e s u l t s  of the  numerical calculations w i l l  

i l l u s t r a t e  the  accuracy of the  solution t o  the  boundary 

value problems and the r a t e  of convergence i n  iden t i f i -  

cation of constants i n  the p a r t i a l  d i f f e ren t i a l  equations, 

The r e s u l t s  a re  compared t o  analyt ical  r e s u l t s  i n  order t o  

obtain an estimate of the accuracy of the  integration 

procedure, 

Eaplac e Equation 

Ident i f icat ion i n  the Laplace equation was considered 

since the Laplace equation i s  unstable when integrated as  

an i n i t i a l  value problem, t h a t  i s  with Cauchy data. Fisher 

1221 and Hartee [26] suggested t h a t  the  e l l i p t i c  equations 

were unsuitable f o r  solution on the analog computer because 

of the  i n s t a b i l i t y  of the approximate equations and the 

d i f f i cu l ty  of obtaining the correct  i n i t i a l  conditions t o  

solve the boundary value problem. 

In Chapter 11, it  was shown how the l inear  boundary 

value problem can be eas i ly  solved so tha t  there i s  l i t t l e  

d i f f i cu l ty  i n  obtaining the correct  i n i t i a l  conditions, 

By the use of a f i n i t e  domain and a greater  number of 

s ignif icant  f igures  than i s  available on analog computers, 
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one i s  able t o  obtain a good approximation t o  the solution 

of the  continuous problem and ident i fy  the  parameters i n  

the equation. 

Tables 3.1 and 3.3 show the numerical solution of 

with boundary conditions 

U ( o . y )  = S \ n  T 9 
The analyt ical  solution i s  

C O S ~ T X ~  u(x,y) = s in- r ry(coshvx-  slnh T X ~  s i n  h -nx) 
(3.3) 

The i n s t a b i l i t y  of t h i s  equation i s  exhibited by the 

f a c t  tha t  any error  i s  propagated and grows as the basic 

solution of the  equation grows. 

The Laplace equation with Cauchy data i s  the c l a s s i ca l  

example of an ill-posed problem of mathematical physics i n  

the sense of Hadamard [27]. However, the consideration 

according t o  Tykhonov's formulation gives the poss ib i l i ty  

of constructing an approximate solution with a cer ta in  

guaranteed degree of accuracy i n  sp i t e  of the  f a c t  tha t  an 

exact solution of Eq. (3.1) with approximate Cauchy data 

does not ex i s t  a t  a l l  or  may strongly deviate from the t rue  

solution [28] . 



For the  problem under considerat ion 

AS x i s  increased au/aXlx 
1 

approaches a l i m i t .  The 
= 0 

i l l -posed nature  i s  then i l l u s t r a t e d  by the  f a c t  t h a t  as 

x i s  increased and t he  same Dirchlet  boundary conditions 
1 

a re  imposed, the  change i n  t he  i n i t i a l  der ivat ive  of t h e  

Cauchy data i s  decreased. Thus, a point  i s  reached a t  

which changes of the  i n i t i a l  der ivat ive  occur beyond the  

number of s ign i f i can t  f igures  ca r r ied  by the  computer, and 

i t  would not  be possible t o  f i n d  a slope which would meet 

t h e  boundary conditions with an e r r o r  l e s s  than € . 
Both t h e  i n s t a b i l i t y  and i l l -posed nature  must be 

considered, but these  problems do not eliminate t he  

p o s s i b i l i t y  of i den t i f i ca t i on  f o r  such equations. The 

i n s t a b i l i t y  i s  inherent ,  but by antapproprdate in tegra t ion  

scheme it i s  possible t o  keep in tegra t ion  e r ro r s  smaller 

than the  truncation e r r o r  which i s  due t o  the  f i n i t e  

approximation. The i l l -posed nature  i s  a const ra in t  on the  

method f o r  the  Laplace equation and means t h a t  associated 

with xl i s  an e r ro r  E such t h a t  

€ ( x i )  =maxi u(x,,y,) - U ~ C X ~ ~  

The solut iqns  of the  3, 5 and 7 l i n e  approximation 

with a second order cen t r a l  difference operator axe shown 



TABLE 3 , l  

APPROXIMATE SOLUTIONS O F  THE LAPLACE EQUATION 
U S I N G  2ND ORDER DIFFERENCE OPERATORS 

x Y 3  l i n e s  5 l ines  7 l i n e s  Analytical 

* no values a re  available 



TABLE 3.2 

DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE 
SOLUTIONS SHOWN I N  TABLE 3.1 

x Y 3 l ines  5 l ines 7 l ines  

e l  05 - 00056 - 0025 -. 0014 

* no values are available 



i n  Table 3.1 and compared with the  analyt ical  solution. 

The error  i n  the approximate solutions from Table 3.1 i s  

shown i n  Table 3.2. Table 3.3 shows the increased accuracy 

obtained by using fourth order operators fo r  the deriva- 

t ives  and i n  Table 3.4 the e r ror  i n  the solutions from 

Table 3.3 i s  presented. This increase i n  accuracy i s  

significant and shows tha t  f o r  t h e  chosen domain the 

i n s t a b i l i t y  does not nu l l i fy  the  solution. The re su l t s  i n  

Tables 3.1 and 3.3 were obtained with a predictor-corrector 

integration program with a s tep s i ze  of .01. The maximum 

number of corrections allowed was four. 

A fourth order Runge-Kutta integration was used t o  

compare the r e s u l t s  with t h a t  of the  predictor-corrector. 

The same s tep s i ze  was used and the  run times were nearly 

identical .  However, as indicated i n  Table 3.5, the  Runge- 

Kutta was more accurate as x, the  continuous variable, 

increased. The time required t o  solve the  l inear  boundary 

value problem with seven l ines  w a s  l e s s  than .5 minutes on 

the Sigma VII d i g i t a l  computer. 

The inverse problem was solved fo r  

with the  same boundary conditions indicated i n  Eq. (3.2) 

with values of u specified a t  points in t e r io r  t o  the 

domain. 
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T u r n  3.3 

APPROXIMATE SOLUTIONS OF THE LAPLACE EQUATION 
USING SENEN LINES WITH 2ND AND ~ T H  

ORDEZ DIFFERENCE OPERATORS 

x Y 2nd order 4th order Analytical 

e l  .125 2795 * 278995 279056 

. 1 375 * 6750 .673690 673700 

e l  *5  7306 .729202 .729208 

e 25 .l25 .1740 173167 173236 

. 25 375 .4202 . .4n8206 .41822g 

0 25 *5 .4548 *452677 .452688 

*5 0 125 *0769 .a76215 * 076257 

*5 375 ' el857 .184076 .184100 

*5 *5 . 2010 199247 .199268 

75 .125 .0291 .028767 .028785 

75 375 0703 069479 .069492 

75 5 .0761 075205 .075218 

*9 .I25 0107 .010576 .010582 

*9 * 375 0259 .025542 ,025548 

09 .5 .0280 .027648 .027652 



TABLE 3.4 

DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE 
SOLUTIONS SHOWN I N  TABLE 3.3 

x Y 2nd o r d e r  4th o rde r  



TABLE 3.5 

COMPARISON OF INTEGRATION PROCEDURES FOR THE 
~ T H  ORDER, SEVEN LINE APPROXIMATION 

OF THE LAPLACE EQUATION 

Predictor-  Runge - 
x Y Corrector Ku-kt a Analyt ical  



Table 3.6 shows the  r e s u l t s  of t he  ca lcula t ions  using 

th ree  data  points  correct  t o  four s ign i f ican t  f igures .  

The in i t ia l  estimate of the  constant was chosen t o  

deviate 10% from correct  value and the  i n i t i a l  der ivat ives  

were chosen as  convenient values f o r  input  t o  the  program 

which deviated by approximately 20%. The seven l i n e  

approximation with predictor-corrector  in tegra t ion  of 

s t e p  s i z e  .01 w a s  used i n  the  i den t i f i ca t i on  procedure. 

Seven i t e r a t i o n s  were required f o r  t h i s  i den t i f i ca t i on ,  

and the  constant,  c,  w a s  i den t i f i ed  t o  four  s ign i f ican t  

f igures  a s  shown i n  Table 3.6 which i s  equivalent t o  t he  

accuracy of t he  data. 

Also shown i n  Table 3.6 a r e  t he  i n i t i a l  conditions, 

di, a t  each i t e r a t i o n  and t h e  constwants obtained from 
i 

the  matrix inversion. A perturb f a c t o r , P ,  of 1.0001 was 

necessary t o  keep the  perturbed solut ions  of the  same 

order of magnitude a s  the  unperturbed solut ion.  It may be 

observed t h a t  (p -1) x i  i s  the  percentage change in the  

i n i t i a l  conditions and t h a t  t he  constants  i' 1 L, i & 7, 

were adjusted so  t h a t  they were approximately equal and 

converged uniformly and monotonically a t  a quadratic r a t e .  

Table 3.7 shows the  accuracy t o  which the  boundary values 
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TABLE 3.7 

SOLUTION OF BOUNDARY VALUES FROM IDENTIFICATION 
SHOWN I N  TABLE 3.6 WHERE bl, b2 and b3 

ARE F IT  I N  A LEAST SQUARE SENSE AND 
SPECIFIED TO 4 SIGNIFICANT DIGITS 

i speci f ied  bi solut ion bi 



were met. 

Heat Conduction Equation 

The heat conduction equation 

with boundary conditions 

U ( X , O >  = M C X , ~ )  = O  

u(o ,$  = sin -rry 
w a s  approximated by subs t i t u t i ng  a  second order cen t r a l  

difference operator f o r  - and in tegra ted with a  aY2 
predictor-corrector  in tegra t ion  method. The f i rs t  r e s u l t s  

shown i n  column 1 of Table 3.8 show t h a t  t he  accuracy 

obtained from a  th ree  l i n e  approximation i s  poor. An 

in tegra t ion  s t ep  s i z e  of .01 was used. The r a t i o ,  

w = Ax/hy2,  was .16 f o r  t h i s  in tegra t ion s t ep  s i z e  and w a s  

held constant a s  t he  number of l i n e s  increased. The second 

column contains the  r e s u l t s  of a  seven l i n e  approximation 

again with w = -16. There i s  some improvement i n  accuracy, 

but  s t i l l  somewhat l e s s  than desirable.  The f i f t e e n  l i n e  

approximation proves t o  be accurate t o  two o r  t h r ee  

s ign i f i can t  f igures .  

In  Table 3.9 i s  shown the  e r ro r  i n  t he  approximate 

solut ions  shown i n  Table 3.8. 

To cont ras t  t he  second order operator,  a  higher order 



TABLE 3.8 

APPROXIMATE SOLUTIONS OF UNSTEADY HEAT 
CONDUCTION EQUATION USING 2ND 

ORDER DIFFERENCE OPEZATORS 

x Y 3 l ines  7 l ines  15 l ines 

.O5 .I25 - -* 235 2339 

1.0 -125 -- 0224 E-04 02043 E-04 

1.0 25 0597 E-04 -415 E-04 03775 E-04 

1.0 l 5 -844 E-04 -586 E-04 .5338 E-04 

2.0 .125 -- 0132 E-08 .lOgI. E-08 

2.0 l 25 .504 E-08 .243 E-08 .2015 E-08 

2.0 05  .713 E-08 .344 E-08 .285O E-08 

* no values are available 

Analytical 



TABLE 3.9 

DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE 
-? SOLUTIONS SHOWN I N  TABLE 3.8 

x Y 3 l ines 5 l ines  7 l ines  

05 .125 - ,* 
05 25 - 0  011 

05 .5 -. 016 

.2 .I25 -- 
02 0 25 -001 

.2 .!5 015 

.4 .a25 -- 

.4 25 .03 E-01 

.4 -5  004 E-01 

1.0 .I25 -- 

1.0 25 -232 E-04 

1.0 05 .327 E-04 

2.0 .125 -- 

2.0 25 .315 E-08 

2.0 .5 .445 E-08 

* no values are available 
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operator was used t o  approximate a 2u/ ay2  as was done f o r  

the  Laplace equation. A four th  order cen t r a l  d i f ference  

operator,  Eq. ( 2 4 ,  was used f o r  the  l i n e s  not adjoining 

a boundary and a spec ia l  operator shown i n  Eqs. (2.7) was 

used f o r  t he  l i n e s  adjoining a boundary. 

A s ign i f ican t  increase i n  accuracy i s  observed i n  the  

ca lcula t ions  shown i n  Table 3.10. The r a t i o ,  w, w a s  kept 

equal t o  .16 throughout the  in tegra t ion  of t he  higher order 

equations. These r e s u l t s  show t h a t  a  good accuracy may be 

obtained by use of a  reasonable number of l i n e s  t o  approxi- 

mate the  continuous equations. I n  Table 3.11 the  e r r o r  i n  

t he  approximate solut ions  i n  Table 3.10 i s  shown. 

The inverse problem was t o  i den t i fy  c i n  

with t he  boundary conditions given i n  Eq, (3.6). A s  a  

f i r s t  experiment, one boundary condition w a s  speci f ied  a t  

x = .5. A seven l i n e  approximation was used with predic tor  

corrector  in tegra t ion  while maintaining The 

boundary condition, given a t  y = .5, was bl = .0071919, 

which i s  accurate t o  f i v e  s ign i f ican t  d ig i t s .  This 

accuracy was grea te r  than was obtained i n  the  d i r e c t  

in tegra t ion  with seven l i n e s  as  shown i n  Table.3,10, The 

constant was i den t i f i ed  t o  four  d i g i t s  of accuracy i n  seven 

i t e r a t i o n s  a s  shown i n  Table 3.12, and the  boundary value 



TABLE 3-10 

APPROXIMATE SOLUTIONS O F  UNSTEADY HEAT CONDUCTION 
EQUATION U S I N G  ~ T K  ORDEB D I F F E R E N C E  OPERATORS 

x Y 7 l ines 15 l i ne s  A n a l y t i c a l  



DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE 
SOLUTIONS SHOWN IN TABLE 3.10 

x Y 7 l ines  15 l ines  



TABLE 3412 

I D E ~ I F I C A T I O N  I N  UNSTEADY HEAT CONDUCTION 
EQUATION FROM ONE BOUNDARY VALUE 

CORRECT TO 5 S I G N I F I C A N T  DIGITS 

I terat ion c b 1 

1 .f5000 .084790 3.708 

2 ,6854 033953 2 330 

4 * 9533 4 ~ ~ g ~ 4 8 6  4.36 E-01 

5 9949 0073699 E-02 

6 • 99981 .0071940 5.97 E-04 

7 0 99987 .0071919 4.28 E-08 

Analytical 1.00000 .0071919 

TABLE 3.13 

IDENTIFICATION I N  UNSTEADY HEAT CONDUCTION EQUATION 
FROM LO DATA POINTS CORRECT TO 4 SIGNIFICANT 

DIGITS USING LEAST SQUARE F I T  

~ t e r .  c bl b5 b l ~  Y 

1 .5OOO 2989 .1114 .03243 5.8 

2 47933 .2586 .05401 .007626 2.2 

3 9658 2375 .03528 .003254 3.4 E-01 

4 0 9986 * 2336 .03254 .002768 8.5 E-03 

5 * 99944 2336 .03248 .002757 3.3 E-06 

Ana l .  1.00000 = 2336 .03245 ,002752 
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was s a t i s f i e d  t o  f ive  d i g i t s  of accuracy, It may be noted 

tha t  the  constant 8 decreased a t  a quadratic r a t e  and thus 

the i n i t i a l  condition also converged a t  a quadratic ra te .  

The execution time required for  t h i s  ident i f ica t ion  was 1.8 

minutes. 

Ten data points were then specified along y = .125 

which had been rounded off  t o  four s ignif icant  d ig i t s .  In  

Table 3.13 a re  shown resu l t s  using a l e a s t  square f i t  of 

the data. The constant was ident i f ied t o  four d ig i t s  of 

accuracy i n  f ive  i te ra t ions ,  and the boundary conditions 

were met t o  different  degrees of accuracy. This i s  eas i ly  

explained when one rea l izes  tha t  the l e a s t  square approach 

minimizes the  sum of square of the deviations from the 

specified boundary conditions and thus the smaller boundary 

values would not be met as accurately. A weighting 

procedure would a l l ev ia t e  t h i s  problem, 

In  Table 3.14 are  presented the r e su l t s  of a pseudo- 

l e a s t  square f i t .  The re su l t s  a re  similar  t o  those of 

Table 3.13. For t h i s  problem there i s  very l i t t l e  

difference i n  the r e su l t s  of the two types of f i t  c r i t e r i a .  

Table 3.13 shows the difference between the given data and 

the integrated solutions f o r  the l e a s t  square and the 

pseudo-least square f i t s ,  There i s  l i t t l e  difference i n  

the sum of the  square of the deviations from the boundary 

values for  the  two methods. 



TABU 3.14 

BaOBEEM SHOWN I N  TABLE 3.13 USING 
PSEUDO-LEAST SQUARE FIT 

I terat ion c 1 5 b10 8 

TABLE 3.15 

COMPARISON OF LEAST SQUARE WITH PSEUDO-LEAST 
SQUARE FIT FOR DATA SHOWN I N  

TABLES 3.13 AWD 3.14 

pseudo leas t  leas t  
i square -bj* square -bi* 

10 6.1 E-06 4.9 E-06 
*specified boundary condition t o  be met 
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Another se t  of calculations was made using the same 

ten boundary conditions used i n  Table 3.13 and 3.14 except 

tha t  the  boundary conditions were correct  t o  only two 

s ignif icant  figures. The constant c was ident i f ied t o  

two s ignif icant  f igures  as shown i n  Table 3.16 i n  f i v e  

i te ra t ions .  

Poisson Equation 

A nine l i n e  approximation was used t o  solve 

i n  the domain of the  uni t  square with the  boundary condi- 

t ions  given i n  Eq. (2.36). A fourth  order cent ra l  

difference operator was substi tuted f o r  l i n e s  n = 2 through 

n = 8 and second order forward and backward difference 

operators f o r  l i n e s  n = 1 and n = 9, respectively. 

E * ( U ~ )  = ( - u 4 - 4 U 3 - 5 U 2  - z u ~ ) / A Y ~  

E ~ ( u ~ ) = (  2 ~ 9 - 5 ~ 8 - 4 ~ 7  - U ~ ) / A ~ '  
The r e s u l t s  are  shown i n  Tables 3.17 and 3.18 and compared 

t o  the analyt ical  solution. The approximation was accurate 

t o  three and four s ignif icant  f igures within the uni t  c i rc le .  - 
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Mildly Nonlinear Equation 

The problem 

w a s  considered over a rectangular domain, 0 L x 6 .5 and 

0 & y  6 .25 with 

u (S)  = o  

where S i s  the  boundary of the  domain. A seven l i n e  

approximation w a s  used with four th  order  difference 

operators f o r  u 
YYo 

The solut ion presented some problems because eU could 

not  be ca lcula ted by the  standard l i b r a r y  subroutine i f  

u > 173. Thus a method similar t o  an imbedding procedure 

w a s  incorporated i n t o  the  program. The in tegra t ion w a s  
. . 

continued u n t i l  dUi/dx became l a rge r  than some number z 

which was a r b i t r a r i l y  chosen as 170. When t h i s  occurred, 

say a t  x t h e  in tegra t ion  was stopped and the  i n i t i a l  
1' 

conditions were found which would s a t i s f y  the  boundary 

conditions a t  xl. The problem w a s  in tegra ted again, and 

i f  the  der ivat ive  became greater  than z ,  the  procedure w a s  

repeated. i 

It was found t h a t  t h i s  i t e r a t i o n  of similar boundary 

value problems did not  always converge. The procedure - 
would reach a given point x and not continue t o  t he  

1 
specif ied  boundary. However, when the  in tegra t ion s tep  
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s i z e ,  O x ,  was reduced t o  a c e r t a i n  value,  t h e  procedure 

converged. 

I n  Table 3.13 a.re shown t h e  s o l u t i o n s  of Eq. (3.9) f o r  

four  r ep resen ta t ive  po in t s  i n  t h e  domain. The results i n  

column 1 and 3 were obtained by i n t e g r a t i n g  along l i n e s  i n  

t h e  x  d i rec t ion ,  while column 1 and 4 were i n t e g r a t e d  along 

l i n e s  i n  t h e  y  d i rec t ion .  The r e s u l t s  obtained i n  a l l  f o u r  

cases  requi red  t h e  use of t h e  i t e r a t i o n  of s i m i l a r  boundary 

va lue  problems. For a seven l i n e  approximation wi th  l i n e s  

i n  t h e  x  d i r e c t i o n  and using a f o u r  order  s e t  of opera to r s  

f o r  E~(u~), it w a s  found tha t  t h e  i t e r a t i o n  of similar 

boundary values did n c t  converge f o r  a s t e p  s i z e  equal  t o  

o r  g r e a t e r  than .OQ25 i n  a f o u r t h  order  Runge-Kutta scheme. 

The numerical ir 'zegration of Eq. (3.3) has a l s o  been 

considered by Bellman and Kalaba [6] and Greenspan [29]. 

From t h e  information given i n  [o] , i t  i s  d i f f i c u l t  t o  make 

any conclusions comparing t h e  methods. 



TABLE 3 19 

APPROXIMATE SOLUTION OF MILDLY NONLINEAR EQUATION 
AT FOUR REPRESENTATIVE POINTS IN TKE DOMAIN 

ul(x,y) = 2nd Order Approximation with three continuous 
lines in the y direction. 0 f y f .5 

u2(x,y) = 4th Order approximation with seven continuous 
lines in the x direction. 0 f x f ,25 

u3(x,y) = 4th Order approximation with seven continuous 
L lines in the y direction. 0 f y - -5 

* 

u4(x,y) = 4th Order approximation with fifteen continuous 
lines in the x direction. 0 L' x 5 .25 
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CHAPTER IV 

SUMMARY, DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

A method of solving a c l a s s  of inverse problems known 

as iden t i f i ca t i on  problems has been described f o r  p a r t i a l  

d i f f e r e n t i a l  equations. The procedure employs t h e  method 

of l i n e s  f o r  approximation of the  p a r t i a l  d i f f e r e n t i a l  

equation and the  Newton-Raphson-Kantorovich expansion i n  

function space which reduces the  solut ion f o r  nonlinear  

equations t o  an i t e r a t i v e  process of solving l i n e a r  

equations. 

The method of l i n e s  with the  superposition of p a r t i -  

cu l a r  solut ions w a s  shown t o  be an e f f ec t ive  method of 

numerically solving l i n e a r  boundary value problems. By 

the  use of t he  l i nea r i za t ion  procedure, the  i den t i f i ca t i on  

problem and the  nonlinear p a r t i a l  d i f f e r e n t i a l  equations 

were reduced t o  successively solving l i n e a r  boundary value 

problems. 

The general procedure was numerically i l l u s t r a t e d  f o r  

t he  Laplace equation, a Poisson equation, an unsteady heat 

conaclction equation, and a mildly nonlinear equation. 

Discussion and Recommendations f o r  Further Work 

The iden t i f i ca t i on  procedure proved t o  be s t ab l e  i n  
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both examples considered, and the  constant was i d e n t i f i e d  

t o  the  same accuracy as the  data,  This indicates  t h a t  t he  

solut ion of t h e  p a r t i a l  d i f f e r e n t i a l  equations was s ens i t i ve  

t o  t he  constant parameters t o  be iden t i f i ed .  This sensi -  

t i v i t y  i s  an important f ac to r  i n  any i den t i f i ca t i on  process. 

The Laplace equation in tegra ted as  an i n i t i a l  value 

problem and the  solut ion of t he  unsteady heat conduction 

equation f o r  negative time a re  both examples of i l l -posed 

problems. The Laplace equation i s  sens i t ive  t o  i n i t i a l  

der ivat ives  which l e d  t o  i t s  i l l -posed nature and exhibited ' I  

i t s e l f  i n  i n s t a b i l i t y  of numerical integrat ion.  The 

unsteady heat conduction equation i s  insens i t ive  t o  i n i t i a l  

values of t he  function and thus can lead t o  an i l l -posed 

problem i f  it i s  desired t o  i den t i fy  t he  i n i t i a l  value of 

t h e  function from data  within t he  domain, The i l l -posed 

nature i s  exemplified by the  r e su l t i ng  i l l -condit ioned 

matrix t o  be inverted. It was shown t h a t  t he  p o s s i b i l i t y  

of the  i l l -posed nature did not i n t e r f e r e  with the  i den t i -  

f i ca t i on .  Further  work needs t o  be done i n  the  area  of 

inverse problems associated with d i f fus ion type equations. 

I n  t h i s  d i sse r ta t ion  the  Jacobian matrix associated 

with the  l i nea r i za t ion  process was evaluated ana ly t ica l ly .  

However, some indicat ion has been given [38,39] t ha t  t h i s  . 

evaluation might be done numerically, It i s  not e n t i r e l y  

c l ea r  though how t h i s  would a f fec t  t he  required computation 
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time o r  t he  s t a b i l i t y  of the  process. 

Another improvement which can be made and should be 

invest igated i s  the  use of d i f fe ren t  higher order operators  

f o r  approximating the  der ivat ives  with respect t o  a l l  but  

one of the  independent variables.  These operator approxi- 

mations lead t o  the  truncation e r ro r ,  which was t h e  

dominate e r ro r  i n  the  procedure of iden t i f i ca t ion .  Boyd 

[24] has used some bes t  f i t  operators which a r e  designed 

t o  con t ro l  the  noise introduced by t h i s  approximation. 

Again, fu r ther  inves t igat ion should be directed along these  

l i n e s  t o  make the  approximation method more effect ive .  

A problem inherent i n  t he  Newton-Raphson-Kantorovich 

l i nea r i za t ion  procedure i s  the  convergence space of i n i t i a l  

approximation. T h i s  convergence space did not present many 

problems f o r  the  equations considered i n  t h i s  d i sse r ta t ion .  

However, i t  i s  conceivable t h a t  such problems w i l l  a r i s e  

and t h e  methods discussed i n  Appendix C might be incorpo- 

r a t ed  t o  increase the  convergence space. Another 

p o s s i b i l i t y  i s  t o  employ gradient  techniques t o  ge t  an 

approximation which i s  within the  convergence space. The 

method of "similar  boundary value problemstt was used t o  

solve two point  boundary value problems i n  which the  nature  

of the  problem and/or the  in tegra t ion scheme i s  unstable.  

An inves t igat ion should be done t o  extend t h i s  method t o  

multipoint boundary value problems. 



Conclusions 

The iden t i f i ca t i on  procedure was shown t o  be e f f ec t ive  

f o r  the  equations, 

US% -C c u y y  = O  
u - LUXX = O  

The in tegra t ion  procedure w a s  a l so  shown t o  give good 

r e s u l t s  f o r  t h e  following boundary value problems : 
C 

u x x  + = f (x,Ljl 
u x x  + Uyq= eU 

The method was shown t o  i d e n t i f y  t h e  parameters i n  these  

equations t o  t he  same accuracy a s  t he  data.  

The method of reduction and in tegra t ion  procedure i s  

e a s i l y  programed and provides an e f f ec t ive  way of solving 

both l i n e a r  and nonlinear p a r t i a l  d i f f e r e n t i a l  equations. 

Dimensionality might be c r i t i c a l  f o r  some problems, but  

t h i s  i s  inherent i n  most numerical methods f o r  so lu t ion  of 

boundary value problems i n  p a r t i a l  d i f f e r e n t i a l  equations. 

However, it i s  not as big  a problem i n  t h i s  method a s  it i s  

i n  other  general methods. 

The method i s  easy t o  program. It i s  assumed t h a t  t he  

program developed by Holloway and Childs and described by 

Holloway [ l l ]  i s  available.  The method then requires  a 

programming e f f o r t  comparable t o  t h a t  required t o  solve an 

i n i t i a l  value problem using a documented forward in tegra t ion  
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scheme. Generally it requires preparation of one data card 

f o r  each i r regular  boundary value i n  addition t o  a few 

informatqon data cards. The method requires l e s s  program- 

ming e f fo r t  t o  adapt t o  a new problem, probably l e s s  

computer time t o  solve a given problem t o  an a rb i t r a ry  high"'  

accuracy, and yields the most expl ic i t  indication of 

accuracy of most and possibly a l l  general methods f o r  the 

numerical solution of multipoint boundary value problems, 

in  l inea r  and nonlinear p a r t i a l  d i f f e ren t i a l  equations 

within a rb i t ra ry  boundaries, presently known t o  the author. 

Thus, extension t o  more d i f f i c u l t  problems than the  simple 

examples used i s  merely a matter of programming and 

computer time. 
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DEFINITION OF TERMS 

In  t h i s  appendix i s  presented the def ini t ions  of some 

terms which appear i n  the disser ta t ion and should be 

defined f o r  the  c l a r i t y  of the  presentation. 

Differential-difference equations. This r e fe r s  t o  

those equations which a r i s e  from subst i tut ion of difference 

operators f o r  d i f f e ren t i a l  operators and have two or  more 

independent variables with d i f fe rent ia t ion  with respect t o  

one and differencing with respect t o  the  others [30] pg. 127, 

Unstable. The numerical integration of a d i f f e ren t i a l  

equation w i l l  be termed "unstable" i f  f o r  a given se t  of 

i n i t i a l  conditions and a s tep s ize ,  h, the  solution diverges 

from the solution of the  d i f f e ren t i a l  equation as the 

integration proceeds [31] pg. 147. 

Mildly nonlinear. The e l l i p t i c  equation 

i s  said t o  be "mildly nonlinear" i f  

and 
a F - a F  - aF^ 
aux au, , aut are bounded 

Under suf f ic ien t ly  strong smoothness hypotheses, a "mildly 

nonlinear9' Dirichlet  problem has a unique solution 1291. 



Quasil inear ordinary d i f f e r e n t i a l  equation. An 

equation i n  which the  highest order derivative appears 

l inear ly .  

Spurious roots.  If a d i f f e r e n t i a l  equation i s  

approximated by a difference equation of higher order than 

the  corresponding d i f f e r e n t i a l  equation, then spurious 

(or  extra)  solutions a r i se .  The roots  corresponding t o  

these spurious solutions a re  known as  "spurious roots.  (1 



APPENDIX B 

SUPERPOSITION OF PARTICULAR SOLUTIONS 

From the c l a s s i ca l  theory of ordinary d i f f e ren t i a l  

equations, it i s  known tha t  the  solution of an nth order 

l inear  ordinary d i f f e ren t i a l  equation i s  a l inea r  combi- 

nation of n independent solutions of the  homogeneous 

d i f f e ren t i a l  equation plus a par t icu lar  solution of the 

complete d i f f e ren t i a l  equation. This appendix w i l l  

demonstrate tha t  an additional condition i s  required i n  

order t o  use superposition of par t icu lar  solutions t o  

s a t i s f y  the complete equation and the boundary conditions, 

Consider the following system of l inea r  f irst  order 

d i f f e ren t i a l  equations 

where A i s  an n x n matrix which may be a function of x, 

Let 

and 

where $ i s  a matrix of solutions of Eq. ( B . l )  of which n 
P 

are  independent and therefore 6; i s  of rank n. 
P 



and - 

Thus m p  s a t i s f i e s  the d i f f e ren t i a l  equation 

where D i s  an (n x n+l) matrix 

To show t h a t  Eq. (B.2) i s  the solution together with 
4 

Eq. (B.3), it i s  necessary tha t  it s a t i s f y  Eq. (B.1). 

Substi tuting Eq. ( ~ ~ 2 )  in to  Eq. (B.1) 

Subtracting 08 from both sides of Eq. (B.5) and 

rearranging t ems ,  
. - 

By Eq. ( ~ ~ 4 )  the l e f t  s ide of Eq. ( ~ ~ 6 )  i s  ident ica l ly  the 

n u l l  vector and therefore 

which gives 

which i s  the condition given i n  Eq. (B.3). 



I f  t he  i n i t i a l  conditions a r e  chosen such t h a t  Fn+l 
s a t i s f i e s  t he  boundary conditions, then 

where $ i s  a submatrix of 9 
P 

and 

solving f o r  x i n  Eq. (B.3) and subs t i t u t i ng  i n t o  

Eq. ( ~ ~ 6 )  gives 

1=1 

which reduces t o  

It w i l l  be shown t h a t  

by proper choice of the  i n i t i a l  matrix gp (xo) where xo 

i s  the  i n i t i a l  value of x. 
- / 

Thus x =o 
and Xn+l= 1 (B.7) 

The rank of the  i n i t i a l  matrix, gp (xo),  must be n. 
- 

We denote by the  vector which represents  the  i n i t i a l  

conditions of t he  solut ion We introduce an a r ray  Q 



such tha t  

We now take the  i n i t i a l  matrix t o  be 

By successively subtracting the  l a s t  column from each of 

the other columns, etc., we get the  normal form of t h i s  

matrix t o  be a diagonal matrix with diagonal elements e i .  
Thus, $ (x) i s  obviously of rank n. 

P 
With t h i s  choice of i n i t i a l  conditions, the  constants 

a re  re la ted d i rec t ly  t o  the new i n i t i a l  conditions, 

Substituting the constraint  condition Eq. (B.3) gives 

It i s  obvious then tha t  

Equation (B.9) shows the r e l a t ive  change i n  the i n f t i a l  
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condition vector  i f  t he  solut ion ?n+l does not s a t i s f y  t he  

boundary conditions. We have found by experience t h a t  t he  

values Q~ can of ten  be qu i te  a rb i t r a ry ,  but, i n  some cases 

it i s  advantageous t o  use 

and oCi must be nonzero. If o(i i s  near zero, we use 

a r b i t r a r y  s ca l a r s  f o r  e i. 
Theoret ical ly,  the  solut ion of a l i n e a r  problem can be 

solved with a one pass algorithm. However, roundoff e r r o r  

of ten  prevents t h i s  i n  numerical applicat ions.  Thus, we 

suggest t h a t  even l i n e a r  problems be solved i t e r a t i v e l y  

with t he  above scheme. 

$The work shown i n  t h i s  appendix follows Childs 1321 

. and Holloway 1111 and has since appeared i n  pa r t  i n  an 

independent inves t igat ion reported by Miele 1331. 

I n  summary, it has been shown t h a t  l i n e a r  boundary 

value problems can be solved by superposition of pa r t i cu l a r  

solut ions  with a.n addi t ional  cons t ra in t  equation. The 

following observations a re  of importance: 

1. The matrix t o  be inverted i s  never s ingular .  This 

i s  ensured by the  proper choice of i n i t i a l  conditions. 

Apparently, Miele [33] pg. 265, had t rouble  with t h i s .  

2. I n  an applicat ion,  the  goodness of s a t i s f ac t ion  



of Eq. (B.7) - together with Eq. (B.9)  i s  an exp l i c i t  

indication of the  roundoff error  exist ing i n  the numerical 

method of solution. 

This l a t t e r  observation was not reported by Miele. We 

do agree with the  posit ive observations of Miele. 
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APPENDIX C 

NEWTON-RAPHSON-KAMTOROVICH EXPANSION I N  FUNCTION SPACE 

The Newton's method f o r  funct ional  equations has been 

of ten  r e f e r r ed  t o  a s  t he  Newton-Raphson-Kantorovich expan- 

s ion i n  function space [6] pg. 22. The method i s  very 

important because it i s  one of t h e  few p r a c t i c a l  methods 

ava i lab le  a t  t he  present time f o r  f inding the  ac tua l  

solut ion of a non-linear funct ional  equation [34] pg. 695. 

The theory of t h i s  method i s  based on the  theory of 

funct ional  analys is  and no attempt w i l l  be made i n  t h i s  

appendix t o  show the  convergence proper t ies  which a r e  

general ly  shown through the  theorems developed i n  funct ional  

analys is  o r  through t h e i r  r e l a t i o n  t o  the  theory dynamic 

programming with i t s  concept of approximation i n  policy 

space. Convergence proofs may be found i n  Kalaba [34] and 

Kantorovich and Akilov [35]. 

I n  t h i s  d i sse r ta t ion  the  l i nea r i za t ion  procedure was 

ca r r i ed  out within t he  framework of t he  ordinary d i f f e r -  

e n t i a l  equations. However, t h i s  expansion may a l so  be 

ca r r ied  out d i r ec t ly  f o r  p a r t i a l  d i f f e r e n t i a l  equations. 

A s  a f i r s t  example, consider the  second order quasi- 

l i n e a r  p a r t i a l  d i f f e r e n t i a l  equation considered by 



Let * 

P ( u )  = A u ~ ,  + B U r y + C ~ y y  +D (C.2) 

where A, B, C and D a r e  funct ions of x, y, u,  ux, and u Y* 

Assume u  t o  be t h e  solu t ion .  Expand Eq. (C -1) about 

the  so lu t ion  u  k+l 

For Eq. ( C . 1 )  

Thus by Eq. (c.4) 

, = PK (u) - D~ (C.8) 

Eq. ( C . 3 )  then reduces t o  t he  l i nea r i zed  equation 



Thus, with the  operator, P, nota t ion the  quasi l inear  

equation 
d P (lo = P L u I ~ U ~  = O  (c.9) 

i s  reduced t o  the  solut ion of t h e  l i nea r  .equations 

The necessary conditions f o r  such an expansion i s  t h a t  

- 
4t  

be continuous and t h a t  u0 be su f f i c i en t ly  c lose  t o  u , 
* where u i s  the  solut ion,  so t h a t  the  expansion Eq. (C,10) 

i s  val id .  

Consider a s e t  of nonlinear ordinary d i f f e r e n t i a l  

equations which a re  wr i t t en  as a nonlinear f i r s t  order 

vector  d i f f e r e n t i a l  equation 

The l inear ized  equation i s  



One problem which i s  often associated w i t h  Newton's 

method i s  finding a n  i n i t i a l  estimate of u0 which i s  close 

enough t o  u* t o  give a convergence sequence of functions 

Two methods have been used i n  our studies t o  extend 

the convergence space. The f i r s t  method i s  a modification 

of Eq. (B.?) 

where i s  the i t h  constant from Eq. (2.25), o ~ :  i s  the 
i 

estimate fo r  the  i t h  unknown i n i t i a l  condition on the kth 

i t e ra t ion ,  C i s  a damping fac tor  which i s  a function of k 

such tha t  0 6 c (k)  6 1. If 6 = 0, then Eq. ( C . 1 3 )  i s  

ident ica l  w i t h  Eq, (B.7).  I f  cT i s  close t o  1, then there  

w i l l  be l i t t l e  difference between and d: as long as  

% and (3 are  not too large. With 0- # 0, one could not 
i 

expect quadratic convergence and Eq. ( C . 1 3 )  would be 

re la ted  t o  gradient type algorithms. This modification and 

some similar  such modifications have been considered by 

Breakwell, e t  a1 [35 1, Lastman [36] and Paine [12] . 
Another modification i s  t o  use ap r io r i  knowledge 

concerning the missing i n i t i a l  conditions. This apr iosi  

knowledge i s  t o  place limits on the missing i n i t i a l  

conditions. Again, t h i s  may in te r fere  with the quadratic 

convergence, but increases the convergence space. 



APPENDIX D 

SOLUTION OF LAPLACE EQUATION BY mTHOD OF LINES 

This appendix presents  t he  ana ly t i ca l  solut ion of t h e  

"method of l ines"  approximation t o  the  Lapolace equation 

with boundary conditions 

u k y )  = u ( x , o )  = u ( x , i \  = o  (D.1) 

u ( o , y )  = s in  -rry 
This equation i s  approximated by a s e t  of l i n e s  i n  

t he  x d i rect ion and a second order cen t r a l  difference 

operator i s  subs t i tu ted  f o r  a 2 u / a y 2 .  

Assuming a solut ion of t h e  form 

Urn (x) = ~ ( m )  V(X> 

gives + C 

2 2 &$ /v = - ( @wl-~I-Z~&rn) + eh- i \ \  /h2p(ml= 6 
L 1 - m & n  

To f ind  f (m)  we solve the  homogeneous difference equation 

2 "  - 

q(m-.~)-  (2-h S ' )  e h l +  p(m-~ \  = o ( D . 3 )  
with boundary conditions 

8 
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The general solut ion of the  difference equation, Eq, ( D . 3 ) ,  

where C and C a r e  a r b i t r a r y  constants and and 1 
1 2 1 2 

a re  roots  of the  cha rac t e r i s t i c  equation 

From boundary conditions Eq. (D.1) we have 

n+-L nc 1 n +i 
~ ( n + 1 ) = C i h l  + C ~ h z  = C L (  hh:l-k2 )=o 

Hence, 
), n t l  li 

i - 2crr is 

( * )  =I o r  xz=(l)"+L =e ,-,+A 

S = L , Z ,  - - *  ,n 
But since 1 1 = 1, it follows t h a t  

2 

2 ZTLS I n is XI = e n + l  1 X2= - - e ~ l r l  

thus 

Subst i tu t ing Eq. ( ~ ~ 4 )  i n t o  Eqo (D.3) 

h2 sin 
n+ I 

In  addit ion 



T S ~  a s  ( y m - 9 0 )  eScm) = c sin ,,L = C S i n  9 
Solving the second equation ar i s ing  from the separation of 

variables 

The solution of Eq. (D.2) i s  a combination of the l inea r ly  

independent solutions 

,Ssx 
~ r n , s \ x )   AS^"* + Bse 1 sin -rrs (ym-23 

9 
n T S  -%" "  ) U ~ ( X )  = L s in  ~ ( y ~ - y . ) ( A s  eSsX + B s e  
s=1 

where As and Bs a re  a rb i t ra ry  constants. These constants 

a re  found by imposing the remaining boundary conditions 

The solution i s  found t o  be 

By comparing t h i s  solution with the analyt ical  solution 

Eq. (3.3) it i s  obvious tha t  they d i f f e r  only by the 

eigenvalue 3.0611, instead of T I .  

It may be shown tha t  eigenvalues approach those of the 

continuous problem as the n, the number of l i n e s , i s  

increased. From Eq. (D.5) 



It is necessary to apply 11Hopita18s rule to find the limit 

as h+-0 

Thus, in the limit, the eigenvalues coincide with the 

eigenvalues of the continuous problem. 
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